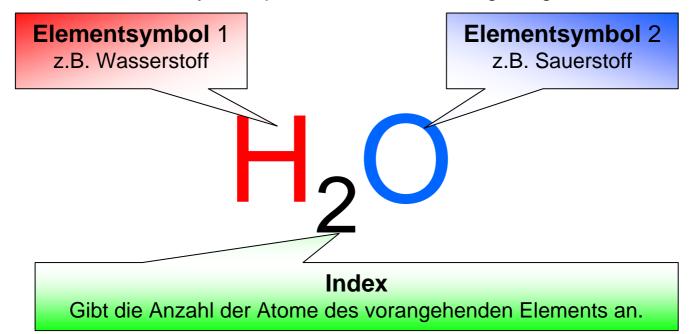

Aggregatzustände



Schmelztemperatur (=Schmelzpunkt; Smp.; ϑ_m): Temperatur bei der ein Stoff vom festen in den flüssigen Zustand übergeht.

Siedetemperatur (=Siedepunkt; Sdp.; ϑ_b): Temperatur bei der ein Stoff vom flüssigen in den gasförmigen Zustand übergeht.

Die kleinsten Wasser-Teilchen bestehen aus zwei Wasserstoff- und einem Sauerstoff-Atom, die miteinander fest zu einem Molekül aus insgesamt drei Atomen verbunden sind.

In der chemischen Symbolsprache wird dies wie folgt dargestellt:

Diese Formeln musst du wissen!!!

H ₂ O	Wasser
NH ₃	Ammoniak
HCl(aq)	Salzsäure
NaOH(aq)	Natronlauge

O ²⁻	"-oxid"
N ³⁻	"-nitrid"
Hal-	"-halogenid"
5 ² -	"-sulfid"

Chemische Formeln lassen sich häufig auch aus dem Namen der Verbindung ableiten:

- z.B. Kohlenstoffdioxid: CO2
- z.B. Distickstoffpentaoxid: N₂O₅

Chemische Formeln von Salzen lassen sich durch die Ionenladungen bestimmen. Es muss dabei gewährleistet sein, dass die Formeleinheit des Salzes insgesamt ungeladen ist.

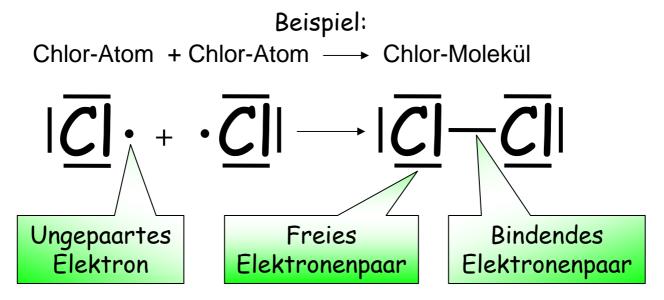
Allgemein gilt für das Salz:

$$X_a^{p+}Y_b^{r-}$$

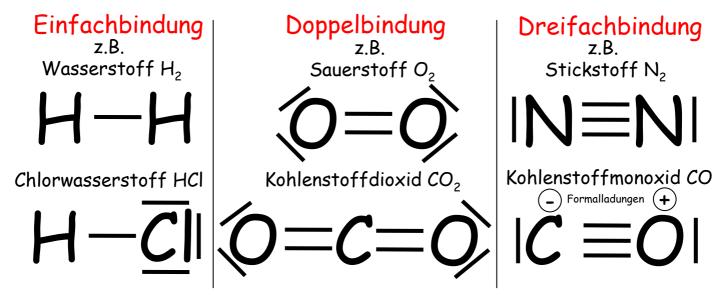
$$a * p + b * (-r) = 0$$

- z.B. Natriumchlorid besteht aus Na⁺ und Cl⁻ - Ionen: NaCl
- z.B. Aluminiumoxid besteht aus Al³⁺ und O²⁻ - Ionen: Al₂O₃
- z.B. Calciumhydroxid besteht aus Ca²⁺ und OH⁻- Ionen: Ca(OH)₂

Chemische Formeln von Molekülen oder Molekülionen lassen sich mit Hilfe der Oxidationszahlen (OZ) bestimmen. Dabei gelten folgende Festlegungen:



In einem Teilchen entspricht die Ladung des Teilchens der Summe aus OZ mal Index der beteiligten Atome.


$$X^{a}Y^{b}$$

$$a * p + b * (-r) = q$$

Durch Überlappung von Elektronenwolken (Atombindung!) ergeben sich Moleküle, die durch Strukturformeln (=Valenzstrichformel) dargestellt werden. Dabei steht ein Strich jeweils für zwei Valenzelektronen (=Elektronenpaar) und ein Punkt für ein ungepaartes Valenzelektron.

Nach der Anzahl der bindenden Elektronenpaare zwischen zwei Bindungspartnern unterscheidet man:

Gerätekunde

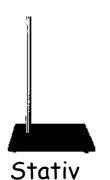
Becherglas

Erlenmeyer-Kolben

Messzylinder Reagenzglas

Reagenzglas- Spritzflasche Thermometer Tropfpipette gestell

Trichter


Spatel

Tiegelzange

Reagenzglashalter

Muffe

Stativklemme

Bunsenbrenner

Gerl, Markreiter, Reichenender LTG Prien GW 8 (NTG)